If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+14v-94=0
a = 1; b = 14; c = -94;
Δ = b2-4ac
Δ = 142-4·1·(-94)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{143}}{2*1}=\frac{-14-2\sqrt{143}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{143}}{2*1}=\frac{-14+2\sqrt{143}}{2} $
| -3.2x+2.3=13.7 | | 6-9(x)=75 | | 11/25=w-8/15 | | 4x7x=64 | | 16x+24=6x+54 | | 5x=8=-36-6x | | x^2+6x+9=4. | | 5(y+1)=3(y+2) | | 4x+12=2×(x+4)+3 | | 175-y=225 | | m^2+6m-20=0 | | 25-y=157 | | J=k^2/4 | | 6+4x+x=36 | | 10+2x=x+11 | | -5+2x=-7x-95 | | 5x^2+10x−15=0 | | 6x+2=-6+2x | | p-4=53 | | -17*m=-204 | | 5+11g=g=4 | | 8t^2-61t-24=0 | | 20=1/5x+12 | | 2x+40=62 | | 276=139-w | | 0.6+x=0.45 | | 0.4(f+8)=20.4 | | -9+x=3x-9 | | 2x=2/7 | | 3-5x=9-3x | | -3x+3=-21+3x | | 0.18-0.05x=7.32 |